
A/z-CALCULUS: AN ALGORITHMIC
INTERPRETATION OF CLASSICAL

NATURAL DEDUCTION

Michel Parigot
Equipe de logique - - CNRS UA 753
45-55 5~me 6tage, Universit6 Paris 7

2 place jussieu, 75251 PARIS Cedcx 05, FRANCE
c-mail: parigot@logique.jussicu.fr

1 I N T R O D U C T I O N

This paper presents a way of extending the paradigm "proofs as programs" to classical
proofs. The system we use is derived from the general Free Deduction system presented
in [31.

Usually when considering proofs as programs, one has only in mind some kind of
intuitionistic proofs. There is an obvious reason for that restriction: only intuitionistic
proofs are contructive, in the sense that from the proof of an existential statement, one
can get a witness of this existential statement. But from the programming point of view,
constructivity is only needed for E~-statements, for which classical and intuitionistic
provability coincide. This means that, classical proofs are also candidates for being
programs. In order to use them as programs, one has two tasks to achieve:

(i) to find a system in which one can extract directly a program from a classical
proof (and not by means of a translation to intuitionistic logic), and

(ii) to understand the algorithmic meaning of classical constructions.
The system we will consider is a natural deduction system with multiple conclusions,

we will call it Classical Natural Deduction (the one with the absurdity rule being called
Usual Natural Deduction). It is a particular subsystem of Free Deduction (FD) with
inputs fixed to the left, chosen for its simplicity: it can be seen as a simple extension of
intuitionistic natural deduction, whose algorithmic interpretation is very well known. In
this context, the contribution of classical constructs to programming appears clearly:
they correspond to control operators added to functional languages, like call/ce in
Scheme. In both contexts, the role of the classical constructs is the same: they allow
to take shorter routes in the construction of a proof~program.

The link between control operators and classical constructs has first been made
by T. Griffin in [1], where he proposes to type the C operator of Felleisen, with the
type -~'-,A --* A. The system he obtains is not satisfactory from the logical point of
view: the reduction is in fact a reduction strategy and the type assigned to C doesn't
fit in general the reduction rule for C. C. Murthy further analysed the connections

t91

between control operators, classical constructs and translations from classical logic to
intuitionistic logic (see [4]).

The difficulties met in trying to use -~--A ~ A (or the classical absurdity rule) as
a type for control operators is not really due to classical logic, but much nore to the
deduction system in which it is expressed. It is not easy to find a satisfactory notion of
reduction in usual natural deduction because of the restriction to one conclusion which
forbids the most natural transformations of proofs (they often generate proofs with
more than one conclusion). Of course, as a by-product of our work, we can get possible
adequate reductions for usual natural deduction, but none of them can be called "the
" canonical one.

Classical natural deduction has precisely been chosen in order to avoid these prob-
lems (it is the simplest subsystem of free deduction which is closed under reduction)
and the algorithmic calculus extracted from it. As a consequence, it enjoys the theo-
retical properties of intuitionistic systems such as confluence and strong normalisation.
The extracted pure calculus, called A#-calculus, is an extension of A-calculus which
satisfies confluence too, and preserves the type during reduction. As expected it al-
lows to reproduce control operators, but in a way which is not exactly the usual one.
Call/cc is simulated in a manner which allows to reduce at any place in the terms
(independently of a strategy).

One important question, which is only sketched at the end of this paper, is the
one of results. This question appears if one consider the logical system not only as a
type system but directly as a computational system in which results are also proofs
(of a data type). In the intuitionistic case there is a uniqueness property of results.
In classical logic the uniqueness property fails (uniqueness contradicts, in some sense,
confluence). But we can show that there is an operator (a typed A/~-term) which allows
to compute the "intuitionistic" result among the "classical" ones, without additional
computational cost. This means that, as far as computation is concerned, classical
logic works as well as intuitionistic logic and that intuitionistic logic is only useful to
communicate results.

A c k n o w l e d g e m e n t s .
I thank J.L. Krivine and C. Raffalli for their stimulating and penetrating comments
on this work.

192

2 C L A S S I C A L N A T U R A L D E D U C T I O N

2.1 R u l e s o f c l a s s i c a l n a t u r a l d e d u c t i o n

Formulas are constructed with the logical operators -~ (negation), --* (implication), Y
(first and second order universal quantifier). The greek letters F, A, H, E denote sets
of formulas; latin letters denote formulas. Sequents P ~- A are interpreted as usual in
sequent calculus. The deduction rules are the following (where y (resp. Y) is not free
in the conclusion of the first order (resp. second order) introduction rule for V).

A ~ - A

II, A I- B,E
II F A ~ B , E --.i

r p A -* B ,A P' b A,A'
F,F' ~- B, A,A '

II, A b E P P -~A, A P' t- "4, A '

II F -~A, E -.i P, P' ~- A, A ' -'~

I I b A[y/x], E P t- VxA, A
I I b VxA, E vi r b A[t/x], A w

II F A[Y/X] , E P ~- V X A , A
II ~- V X A , E vl P ~- A [T / X] , A w

The formulas explicitely mentionned in the rules are called active. The one which
bears the connective is called the main formula of the rule. Weakening is managed
implicitely: non-occuring active formulas are allowed in the premises of the rules.

C o m m e n t s .
(i) For simplicity, we deal only with the connectives whose (intuitionistic) algorithmic
interpretation is done in lambda-calculus, but the system and its algorithmic interpre-
tation extend to the other connectives.
(ii) The deduction system is presented with sequents, but can of course be also pre-
sented as a deduction system of (multiple) formulas; here are for instance the corre-
sponding rules for ---~:

[A] 1

B, E A ~ B, A A, A'
A --4 B, A 1 B, A, A,

(iii) Proofs of usual natural deduction are easely translated in this system: one replaces
each axiom -,A I- "~A which is used in an absurdity rule by the following piece of proof

A P A
F -~A, A

193

2 . 2 O n t h e c h o i c e o f t h e r u l e s

Classical natural deduction is a subsystem of free deduction with inputs fixed to the
left. Here are, for instance, the corresponding rules of free deduction for --* and -,
where the missing premisses (which are here restricted to axioms) are inside boxes.

[A ~ B I - A ~ B] II, A F B , E P F A - - , B , A P ' e A , A' [-B-VB-]
II F- A ~ B, E P, F' I- B, A, A'

I-,AI--,AI II, A b E P b -~A,A F' b A,A'
II F- -~A, E P, r , I- A, A'

In addition to this choice of inputs, which corresponds to the usual functional
view of proofs, some simplifications have been done to make the system as close as
possible to intuitionistic natural deduction and therefore, the classical constructs easier
to understand:

(i) The rules for --* are the usual ones, i.e. those of the unified version where the
introduction rule has two active formulas A and B in the premise; we could instead take
the decomposed version with two introduction rules, which would generate a decom-
posed version of fl-reduction (the unified version is in a certain sense an optimisation
of the decomposed one).

(ii) The choice of the inputs to the left allows to kill every premise having a
left active formula. In the present system the ones which are killed are precisely the
ones which are killed in intuitionistic natural deduction. Other choices could lead to
interesting new algorithmic properties; a good candidate is the unrestricted elimination
rule for --*:

P P A - - * B , A P ' F A , A' P " , B P A "
F, F', F" P A, A', A"

The resulting system is a natural deduction system with multiple conclusions. Sev-
eral such systems have been proposed in the past for proof-theoretic investigations 1
but, as far as I know, they have never been studied from the algorithmic point of view.

2 .3 C u t s a n d t h e i r e l i m i n a t i o n

The algorithmic interpretation of the system will follow the cut-elimination procedure.
Cuts are understood as "obstacles" to the subformula property. As in free deduction,
one distinguishes between logical cuts and structural cuts. One has a logical cut when
the main formula of an elimination rule R i i s active in the preceding rule R~ and R2 is
an introduction rule; one has a structural cut when the main formula of an elimination
rule R1 is not active in the preceding rule R2.

Logical cuts are nothing else but the usual cuts of intuitionistic natural deduction.
The specificity of classical natural deduction appears with strutural cuts: because

1see C. Celluci, Existential Instantiation and Normalisation in Sequent Natural Deduction, Annals
of Pure and Applied Logic (to appear), for a discussion of these systems and references.

194

conclusions contain more than one formula, the active formula of the conclusion of
rule is not necessary active as formula of the premise of the next rule.

Logical and structural cuts have corresponding reduction rules. We give here the
reduction rules for the connective --% which are the important ones from the computa-
tional point of view (the rules are analogous for the other logical operators). In these
rules, d~ are names for proofs indicated by a line of dots.

Logical reduct ion:

reduces to

A F A
, o o d 1

F1, A 1" B, A,
FIb A --* B, A,

. ~ d 2

F2 }- A, A~
s }- B,A, ,A2

. d 2

F2 F A, A2
. HI
F,,F2 F B,A, ,A2

The resulting proof d is obtained by replacing in dl the occurences of the axiom A b"
A, by the proof d2 with conclusion F~ F A, A~; the conclusion of d is F1, F2 b B, A1, A2
up to weakenings. If there are several occurences of A F A in d,, the subproof d2 is
duplicated; if there is no occurence of A I- A in dl, the subproof d2 is erased.

S t ruc tu ra l reduct ion:

. d l

F, b A - * B, A1

F2 I- A ~ B, A2
. d 3

F3 ~- A, A3
R

F2, F3 F B, A2, A3

reduces to

�9 ~ 1 7 6 1 7 6 ~ d 1

F, 1- A -* B, AI
. ~ ~ d 3

F3 }- A, A3
R

Fx,F3 F B, A1,A3
. , d 2

P2, F3 F B, A2, A~

The resulting proof d is obtained by replacing inductively in d2 each subproof dl
whose conclusion contains an active occurence of A --* B , by the proof obtained by
applying R directly to the conclusions of dl and d3; the conclusion of d is F2,Fz I-
B, A2, A3 up to weakenings. If there are several such subproofs dl, the subproof da is
duplicated; if there is no such subproof d,, the subproof d3 is erased.

195

C o m m e n t s . The logical reduction given here coincides exactly with the one of free
deduction. The structural reduction takes into account the particular form of the de-
ductions in classical natural deduction.

2.4 Algorithmic interpretation
The algorithmic interpretation of classical natural deduction is based on the cut-
elimination procedure, as in the case of intuitionistic natural deduction (where it is
expressed as a typed lambda-calculus). For that purpose, formulas are replaced by
indexed formulas. In this way the previous reduction rules become precisely defined
and, because one deals with sets of indexed formulas, the contraction rule is man-
aged implicitely (formulas with the same index are automatically contracted). In the
intuitionistic case the indexes are only needed for the left formulas of the sequents
(the hypotheses), because the right formula (the conclusion) is unique. In the present
case indexes are required on both side: left formulas receive indexes x, y, z, ... (called
A-variables), right formulas receive indexes a, fl,7, ... (called /z-variables), and the
binding mechanisms of these variables allow to recognize in a sequent which one is
concerned by the current rule.

The algorithmic calculus is a little bit simplified (but not changed) if one keeps
a non-indexed current formula to the right of the sequent, which denotes the active
formula of a premise. This current formula is managed as in usuM natural deduction,
i.e. the active formula of a conclusion is the current formula unless otherwise stated:
the binding mechanism of/z-variables becomes thus the transformation of an indexed
formula into the current formula. In this way intuitionistic proofs are treated exactly
as usual in the more general context of classical proofs. Of course, because indexing
is not systematic, extra rules for indexing are required (we call them naming rules).
These rules replace classical absurdity rule of usual natural deduction.

The algorithmic interpretation of classical natural deduction generates a pure cal-
culus, called A/z-calculus, which extends).-calculus in a simple manner.

2.5 U s u a l natura l d e d u c t i o n

Some difficulties for finding a satisfactory reduction notion for usual natural deduction
(with the classical absurdity rule) appear clearly when it is embedded in Free Deduc-
tion. The introduction and elimination rules for -~ are restrictions to left inputs of the
left and right rules of Free Deduction:

[-~AI-~A] II, A P Pt--~A r ' t - A
II I- -,A F, F' b

Because of the restriction to at most one formula in the conclusion, these rules be-
come incomplete for classical logic; completeness is achieved with the classical absurdity
rule, which is another restriction of the left rule of Free Deduction:

F,-,A I-

P F A

196

This rule generates cuts of a new kind: instead of having only left rules (intro-
ductions) directly followed by right rules (eliminations), one can have a right rule
(elimination) followed by a left rule (absurdity rule), with some other rules between
the two.

. dl
-~A b -,A F ~ A

r, -,A l-

S , ' ~) i ' ; e~
A I - A

The natural way of eliminating this kind of cut would be to compose directly d2
and dl, but if d2 is not trivial, this creates sequents in dz having two formulas in the
conclusion (the problem is that usual natural deduction is not closed under structural
reduction).

3 X#-CALCULUS

3.1 P u r e A/z-calculus

A/t-calculus has two kinds of variables: the A-variables x, Y, z, ..., and the/t-variables
a, fl, 7, ... One way of understanding A/t-calculus is to consider it as an extension of
A-calculus where one has the possibility to name arbitrary subterms by/t-variables and
to abstract on these names: this means that an operation can be applied directly to
subterms of a term, and not only to the whole term as in A-calculus.

T e r m s contain n a m e d and u n n a m e d terms defined inductively as follows:
- x is an unnamed term, if z is a A-variable;
-Ax .u is an unnamed term, if x is a A-variable and u is an unnamed term;
- (t u) is an unnamed term, if t and u are unnamed terms;
- / t a . e is an unnamed term, if e is a named term and a is a/*-variable;
-[a]t is a named term, if t is an unnamed term and a is a/t-variable.
For simplicity, one considers only terms where bounded and free variables are dis-

tinct and bounded variables are bounded only one time (this means that one considers
terms up to renaming of bounded variables).

The basic r e d u c t i o n ru les are the following:
logical reduction:

(Az.u v) ~o @,I x]
structural reduction:

renaming:

(/t,a.u v) ,4/[,a],.,,]

where u[[fl](w v)/[fl]w] is obtained from u by replacing inductively each subterm of the
form [fl]w by [fl](w v).

197

The one-step reduction relation (denoted c,1) is defined as the compatible closure
of this basic reduction relation, and the reduction relation (denoted ~,) as the reflexive
and transitive closure of the one-step reduction relation.

E x a m p l e . In A#-calculus (contrary to A-calculus), there are terms which give al-
ways the same result, independently of the number of arguments they are applied
to. For instance, the term r = Ax.Ay.lt~.[~](x y) is such that, for each n E N,

z) y) zl...z.) y).

C o m m e n t . The operator # looks like a A having a potentially infinite number of
arguments. The effect of the reduction of (...(#fl.u vl).. .v,) is to add the arguments
vl, ..., v, to the subterms of u named fl, and this independently of the number n of
arguments #fl.u is applied to. If the number n of arguments would be known in
advance, one could replace #fl by Ax~...Ax, and [fl]w by (...(w x~)...x,), with the usual
reduction for A.

R e m a r k . There is a reduction for the operator # which is similar to y-reduction in
A-calculus:

/Lc~.[c~]u ~,~ u if a has no free occurence in u.

3.2 C o n f l u e n c e o f A p - c a l c u l u s

T h e o r e m 1 In A#-calculus~ reduction is confluent i.e., if u t, ul and u ~ u2, then there
exists v such that ul ~" v and u~ t, v.

Proof . One proceeds as for A-calculus. One defines a new reduction relation =~'1 such
that:

(i) r, is the transitive closure of =~x and
(ii) =r is confluent.

From this two facts one deduces as usual that ~, is confluent.
The relation =~1 is defined inductively as follows:
(a) x o l x;

(b) if u =~1 u', then Ax.u ~1 Ax.u~;
(c) if u =~1 u' and v =~1 v', then (u v) ~1 (u' v');
(d) if u =~1 u', then #a.u =~1 #a.u';
(e) if u =~1 u', then [a]u =~, [a]u';
(f) if u =~, u' and v =~, v', then (Ax.u v) =~t u'[v'/x];
(g) if u =~1 u' and v =r v', then (tza.u v) =~1 #a.u'[[a](w v')/[a]w];
(h) if u =~, u', then [a]gfl.u =~1 u'[a/fl].
It is easy to check that t> is the transitive closure of =~1 and one deduces the

confluence of :=~1 from the following facts:
(iii) if u =~1 u' and v =~1 v', then u[v/x] ~1 u'[v'/x];
(iv) if u :=~1 u' and v =~1 v', then u[[c~](w v)/[a]w] =~1 u't[a](w v')/[a]w];
(v) if u ~1 u', then u[a/fl] ~1 u'[a/fl].

R e m a r k . A/~-calculus suggests some more reduction rules which are not required for
the cut elimination procedure, e.g. the following one, which is symmetrical to the
structural reduction rule:

198

The addition of such reduction rules allows to have a stronger notion of normal form,
but it destroys of course the confluence of the calculus.

3 . 3 T y p e d X / z - c a l c u l u s

Here one deals with sequents such that (i) formulas to the left of ~- are indexed with
,~-variables, (ii) formulas to the right of ~- are indexed with it-variables, except at most
one formula which is not indexed, (iii) distinct formulas never have the same index. To
each sequent in a proof is associated a term of)~it-calculus.

In the following rules, F, II are set of formulas indexed by ,~-variables, and A, E are
set of formulas indexed by it-variables.

Logica l ru les

x : A = P A

u : II, A~F B , E t : P P A ~ B , A u : P ' F A , A'

$x .u : H ~ - A ~ B , E (t u) : P , F ' ~ - B , A , A '

u : H I - A [y / x] , E u : P b VxA, A

u : I I F V x A , E u : F b A [t / x] , A

u : H ~ - A [Y / X] , E u : P F V X A , A

u : H F V X A , E u : F P A [T / X] , A

N a m i n g rules

t : H k A , E e : P F A ~ , A

[a]t : H ~-A%E gc~.e : P I - A , A

C o m m e n t . The logical rules are essentially the ones of typed ,~-calculus. The struc-
tural rules are reproduced implicitely at the level of indexed formulas; the right struc-
tural rules are thus connected to the naming rules: the first one includes contractions
(the case where A ~ already appears in A) and the second one, the weakening (the case
where A ~ does not occur).

As in typed A-calculus one can define "-A as A ---*2_ and use the previous rules
with the following special interpretation of naming for 2-: for a a it-variable, 2-~' is not
mentionned; this gives the following rules (where 6 has no free occurence in e):

u : H,A" ~-.L,E t : P P -~A,A u : P' P A,A'
~x.u : II b - ,A,E (t u) : P,F' b 2 - ,A ,A'

t : H b 2 - , E e : P ~ - A

[7]t : I I b E #6.c : P P . l . , A

Of course, one can also write direct rules for -, (they are derivable from the previous
ones):

199

u : II, A = F E t : F F - - , A , A u : F * F A , A I

Ax. t th .u: I I k - , A , E [7](tu) : r,r, A, x,

R e m a r k . The type system for A#-calculus can be seen as a system with at most one
conclusion, each named formula in the conclusions being replaced by its negation in the
hypotheses. The operator/ t becomes thus in a certain sense the algorithmic content of
the classical absurdity rule. In this intcrpretation, terms corresponds to the case where
there is exactly one conclusion.

T h e o r e m 2 The type is preserved during reduction, i.e. if t : F k- A, Z~ is derivable
and t ~ t ~, then t : F ~- A, A is derivable.

R e m a r k . One can imagine more general notions of structural reduction, for instance
the following one, where one shifts an arbitrary piece of term instead of an application
only (in this rule, x is supposed to have exactly one occurence in t, and t unnamed):

v)/x]

But such transformations preserve the type (i.e. are logically correct) only under certain
conditions proofs.

3 . 4 E x a m p l e s

In the examples the naming rules are not explicitely mentionned (but easy to recover).

E x a m p l e . - ,A ~ (A ~ V X X)

-~A t- -,A A ~- A

-~A, A F

-,A b A --* V X X

F ~ A ---+ (A .-, V X X)

This proof produces the term r = Ax.)~y.#5.[~o](x y) of the w 3.1 .

x : -~A ~F-~A y : A v b A

[~](x y) : -~A ~, A v F

Ay.lth.[9~](x y) : -,A F A --* V X X

Ax.Ay.tth.[~o](x y) : ~- -,m -* (A --* V X X)

One can remark that r is also of type "~A ~ -,A, but (...(((r x) y) z,).., z ,) is typable
with I" of type -,A --+ (A ~ V X X) but not with ~" of type "-,A --* -,A (the typable term
is in this context (...(tth.[qo]((r x) y) z,)...z~). I n this context, 2_ hand V X X do not have
exactly the same behaviour.

Example. -,--,A --* A
A F A

"-,-',A F -~-,A F -,A, A

. - , - ,AI-A

F - - , - - , A ~ A

200

This proof produces a A/t-term as follows:

x : A = ~ A

y : "~'-,A y t - ' , " ,A Ax./th.[a]x :P " , A , A "

[l(y : e A ~

A y . , , . [v] (y : A

Let R be Ay.#a.[fll(y Ax.#&[a]x). When applied to arguments u, v,, ..., v,, it reduces
in the following way:

(...((Ay./ta.[~l(y Ax.Vh.[alx) u) v~)...v,)
~(...(/t~.[Z](~ A=.~.[~]~) ~,)...~,)

~,~.[/~1(~ A~./t~.[~l(...(~ v,)...~,))
The term R has a behaviour close to the one of the C operator of Felleisen.

Example . ((A ~ B) -+ A) ~ A

(A -~ B) ---+ A ~- (A ~ B) .--+ A

(A - - , B) ~ A F A

~- ((A ~ B) ---, A) ---+ A

This proof produces a A/t-term as follows:

y :

A k - A

~" A.--+ B , A

x : A " F A

(A -+ B) ~ A ~ k" (A ---+ B) ---, A Ax./t&[a]x : ~- A ---* B , A '~

(Y Ax./t&[a]x) : (A ---+ B) --+ A N F A, A"

Ay./t~.Ial(y Ax.#5.[a]x) : k- ((A .--+ B) --.+ A) -+ A

Let ~ be Ay./ta.[a](y Ax.#5.[a]x). When applied to arguments u, vl, ..., v,, it reduces
in the following way:

(...((Ay.#~.[a](y Ax.#~.[alx) u) vl),..v,)

The term ~ has a behaviour close to the one of the call/cc operator of the Scheme
programming language.

3 . 5 F u r t h e r p r o p e r t i e s o f A / t - c a l c u l u s

We briefly sketch two important topics, that we cannot develop here.

3.5.1 D a t a t y p e s

In intuitionistic natural deduction one has a uniqueness property of results. Suppose
for instance that natural numbers are defined by the following second order formula

N= := VX(X0 -~ (Vu(Xy -+ X s y) - , X x))

which means semanticMly that x is a natural number if and only if x belongs to each
set X containing 0 and closed under the successor function s. For each n, there is a

201

unique intuitionistic cut-free proof of Ns"O, and the corresponding term of lambda-
calculus can be considered as an adequate represention of the natural number n (see
[5]). In classical natural deduction, the uniqueness property fails (for each n > 0, there
is an infinite number of cut-free proofs of Ns"O) and classical proofs generates "false"
natural numbers: Ax.Af.(f/zS.[~]z) is for instance a false representation of 1. '

But one can show that there is an "output" operator CJv which allows to recover
the intuitionistic cut-free proof among the classical ones. Instead of reducing a proof d
of Nx, one reduces CN applied to d (of course, using the rules of reduction of classical
logic). For each data type, one can find an output operator which works for the proofs
of this data type. Output operators are strongly connected with the memorization
operators of Krivine [3].

3.5.2 An abstract A/z-machine

A#-calculus can be executed by an abstract machine in the same way as A-calculus.
In the case of an environnement based machine (for left-most reduction), with an
environnement and a stack, one has only to add two instructions to the ones for A-
calculus: to save the current stack in o~ (when the code is/~a) and to restore the stack
c~ (when the code is [a]).

REFERENCES
[1] T. GRIFFIN, A formulae-as-types notion of control, Proc. POPL, 1990.
[2] W.A. HOWARD, The formulae as types notion of construction. Manuscript

1969. In: To H.B. CURRY: Essays on combinatory logic, A-calculus and formalism;
Seldin, Hindley (eds.), Academic Press 1980.

[3] J.L. KRIVINE, Op6rateurs de raise en m6moire et traduction de G6del. Archive
for Mathematical Logic, 30(1990).

[4] C. MURTHY, Classical proofs as programs: how, when, and why. Manuscript,
1991.

[5] M. PARIGOT & J.L. KRIVINE, Programming with proofs. Presented at
SCT'87. In EIK 26 (1990).

[6] M. PARIGOT, Free deduction: an analysis of "computations" in classical logic.
2nd Russian Conference on Logic Programming, 1991 (to appear in LNAI).

[7] D. PRAWITZ, Natural deduction. Almqvist&Wiksell, 1965.

